Optimisation of Cellulase Production by Penicillium funiculosum in a Stirred Tank Bioreactor Using Multivariate Response Surface Analysis

نویسندگان

  • Marcelle Lins de Albuquerque de Carvalho
  • Daniele Fernandes Carvalho
  • Edelvio de Barros Gomes
  • Roberto Nobuyuki Maeda
  • Lidia Maria Melo Santa Anna
  • Aline Machado de Castro
  • Nei Pereira
چکیده

Increasing interest in the production of second-generation ethanol necessitates the low-cost production of enzymes from the cellulolytic complex (endoglucanases, exoglucanases, and β-glucosidases), which act synergistically in cellulose breakdown. The present work aimed to optimise a bioprocess to produce these biocatalysts from the fungus Penicillium funiculosum ATCC11797. A statistical full factorial design (FFD) was employed to determine the optimal conditions for cellulase production. The optimal composition of culture media using Avicel (10 g·L(-1)) as carbon source was determined to include urea (1.2 g·L(-1)), yeast extract (1.0 g·L(-1)), KH2PO4 (6.0 g·L(-1)), and MgSO4 ·7H2O (1.2 g·L(-1)). The growth process was performed in batches in a bioreactor. Using a different FFD strategy, the optimised bioreactor operational conditions of an agitation speed of 220 rpm and aeration rate of 0.6 vvm allowed the obtainment of an enzyme pool with activities of 508 U·L(-1) for FPase, 9,204 U·L(-1) for endoglucanase, and 2,395 U·L(-1) for β-glucosidase. The sequential optimisation strategy was effective and afforded increased cellulase production in the order from 3.6 to 9.5 times higher than production using nonoptimised conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Is an organic nitrogen source needed for cellulase production by Trichoderma reesei Rut-C30?

The effect of organic and inorganic nitrogen sources on Trichoderma reesei Rut-C30 cellulase production was investigated in submerged cultivations. Stirred tank bioreactors and shake flasks, with and without pH control, respectively, were employed. The experimental design involved the addition of individual organic nitrogen sources (soy peptone, glutamate, glycine and alanine) within a basal me...

متن کامل

Cellulase Production Under Solid-State Fermentation by Ethanolic Zygomycetes Fungi: Application of Response Surface Methodology

Background and Objectives: Cellulase is an important enzyme with multiple applications in industries, including food, laundry, pharmaceutical, textile, pulp, paper and biofuel industries. Solid-state fermentation (SSF) is a method for cellulase production, which includes several advantages, compared to submerged fermentation. In this study, cellulase was produced by three filamentous fungi, i.e...

متن کامل

Disruption of zinc finger DNA binding domain in catabolite repressor Mig1 increases growth rate, hyphal branching, and cellulase expression in hypercellulolytic fungus Penicillium funiculosum NCIM1228

Background There is an urgent requirement for second-generation bio-based industries for economical yet efficient enzymatic cocktail to convert diverse cellulosic biomass into fermentable sugars. In our previous study, secretome of Penicillium funiculosum NCIM1228 showed high commercial potential by exhibiting high biomass hydrolyzing efficiency. To develop NCIM1228 further as an industrial wor...

متن کامل

COMPARISON BETWEEN CONTINUOUS AND BATCH PROCESSING TO PRODUCE XYLANASE BY Penicillium canescens 10-10c

Penicillium canescens 10-10c strain was cultivated on barley straw hydrolysate as a soluble nutrient source and as inducer for xylanase production. Barley straw hydrolysate was obtained by treatment of barley straw with NaOH or hot water. In shake flask cultures, NaOH treatment was found to increase the biomass production, but was not accompanied by an increase in xylanase production. The best ...

متن کامل

Penicillin Production in Continuous Stirred Tank Reactor by Penicillium chrysogenum Immobilized in Agar

A previously developed immobilization technique involving agar as matrix is investigated further in penicillin production by P. chrysogenum ATCC 10238 at reactor level. Several modifications were found to decrease the germination lag time, including a higher spore concentration, an increased porosity of gel, and decreasing the mass transfer barrier. This approach enabled the production of penic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014